
CodeArts Build

Best Practices

Issue 01

Date 2024-11-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Creating a Docker Image with a Maven Artifact and Pushing the Image to SWR
(Built-in Executors, GUI)... 1

2 Building with Maven and Uploading the Software Package to the Self-hosted
Repo (Built-in Executors, GUI)...6

3 Building with Maven to Generate a Private Dependency for Another Build (Built-
in Executors, GUI)... 12

4 Building with npm and Uploading the Software Package to the Release Repo
(Built-in Executors, GUI)... 21

5 Building with Maven (Custom Executors, GUI)... 25

6 Building with Maven, Uploading the Software Package, and Pushing the Image
to SWR (Built-in Executors, Code)..32

7 Running a Multi-Task Maven Build Project (Built-in Executors, Code)................... 38

8 Using the File from the Self-hosted Repo to Build with Maven and Uploading the
Resulting Software Package (Built-in Executors, GUI)..44

9 Running a Build Task on a Custom Environment (Built-in Executors, GUI)........... 51

CodeArts Build
Best Practices Contents

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. iii

1 Creating a Docker Image with a Maven
Artifact and Pushing the Image to SWR

(Built-in Executors, GUI)

Scenario
In this practice, you use CodeArts Build to build a Maven project. Afterward, you
create a Dockerfile that outlines the process of packaging the Maven build outputs
into a container image. Then, you build a Docker image from the Dockerfile and
push the image to the SWR image repository. The build output contained within
the image can be used for future compilation or deployment purposes.

Requirements
● You have created an organization named codeci_gray in SWR.
● You have permissions for CodeArts Repo.

Procedure

Table 1-1 Steps

Step Description

Creating a Project Create a project.

Creating a
CodeArts Repo
Repository

Create the code file used for your build.

Creating a Build
Task

Create, configure, and run a build task.

Viewing the Build
Results

Check the build logs and result files to verify the build
results.

CodeArts Build
Best Practices

1 Creating a Docker Image with a Maven Artifact
and Pushing the Image to SWR (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0014.html

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the displayed page, set Repository Name to build_docker_image_repo, and
leave the other parameters as default. Click OK. The details page of the new code
repository is displayed.

Step 5 In the root directory of the code repository, choose Create and select Create File
from the drop-down list.

Figure 1-1 Creating a file

Step 6 Name the file Dockerfile, copy the following code to the file (as shown in Figure
1-3), and click Submit.
FROM ubuntu:latest

set maintainer
LABEL maintainer=build

CodeArts Build
Best Practices

1 Creating a Docker Image with a Maven Artifact
and Pushing the Image to SWR (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 2

https://console.eu.huaweicloud.com/

RUN mkdir /release_app
COPY ./target/javaMavenDemo-1.0.jar /release_app/maven_app.jar

USER build

javaMavenDemo-1.0.jar is the file name in the format of ${artifactId}-$
{version}.${packaging} defined in the pom.xml file, as shown in Figure 1-2.

Figure 1-2 pom.xml file

Figure 1-3 Dockerfile content

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 1-2. Then, click Next.

Table 1-2 Basic information

Parameter Description

Name Assign a custom name to the build task, for example,
build_docker_image_task.

CodeArts Build
Best Practices

1 Creating a Docker Image with a Maven Artifact
and Pushing the Image to SWR (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 3

Parameter Description

Code
Source

Select the code source from which code will be pulled for your
build. In this practice, select Repo.

Repository Select build_docker_image_repo, the code repository created in
Creating a CodeArts Repo Repository.

Default
Branch

Keep the default value master.

Step 3 Select Blank Template and click OK to create the build task. The Build Actions
page is displayed.

Step 4 On the Build Actions page, click the GUI tab. Then click Add Build Actions on the
left and add the Build with Maven action. Leave the parameters as default.

Step 5 Click Add Action. In the right pane, click the Container related tab. Hover over
action Build Image and Push to SWR and click Add on the card. Set the
parameters according to Figure 1-4.

Expand the Organization drop-down list and select hwstaff_codeci_gray created
to meet the requirements. Type release_image in the Image Name text box, and
v1.0 in Image Tag. Leave the other parameters as default.

Figure 1-4 Configuring the build action

Step 6 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

----End

CodeArts Build
Best Practices

1 Creating a Docker Image with a Maven Artifact
and Pushing the Image to SWR (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 4

Viewing the Build Results

Step 1 On the Actions tab, check that the console displays the logs of the build task as it
runs. The Build Logs window automatically scrolls down to show new entries. As
shown in Figure 1-5, the build log window displays the information about the
product of the Maven build.

Figure 1-5 Information about the Maven build product

Step 2 After the build task is successfully run, go to the SWR console. Choose My Images
and click the Private Images tab (which is displayed by default). From there, click
the name of the image (release_image) created in step Step 5 to access its
details page.

Figure 1-6 Image list

----End

CodeArts Build
Best Practices

1 Creating a Docker Image with a Maven Artifact
and Pushing the Image to SWR (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 5

2 Building with Maven and Uploading the
Software Package to the Self-hosted Repo

(Built-in Executors, GUI)

Scenario

CodeArts Build provides default dependency repositories. If they fall short of your
service needs, you can create custom repositories for your builds. In this practice,
you build with Maven and upload the resulting package to the self-hosted repo
for future use. Same procedures apply when you work with other programming
languages.

These steps depend on the following services:

● CodeArts Repo: stores your project code.

● CodeArts Artifact: stores your private dependencies.

Requirements
● You have permissions for CodeArts Artifact.

● You have permissions for CodeArts Repo.

Procedure

Table 2-1 Steps

Step Description

Creating a Project Create a project.

Creating a Self-
hosted Repo

Create a self-hosted repo.

Creating a
CodeArts Repo
Repository

Create a code repository.

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html

Step Description

Creating and
Running a Build
Task

Create, configure, and run a build task.

Viewing the Build
Results

Check the build logs and result files to verify the build
results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a Self-hosted Repo

Step 1 In the navigation pane, choose Artifact > Self-hosted Repos.

Step 2 Click Create and set parameters according to Table 2-2.

Table 2-2 Parameters for creating a self-hosted repo

Parameter Description

Repository
Type

Select Local Repository.

Repository
Name

Assign a custom name to the repository, for example,
maven_repository.

Package
Type

Select Maven.

Project Leave the value as default. The field is autofilled with build-
bestpractice in this practice.

Include
Patterns

Leave it blank.

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 7

https://console.eu.huaweicloud.com/

Parameter Description

Version
Policy

Specify the version of artifacts stored in the repository. Select
either Release (the release version with stable functions) or
Snapshot (the development version with unstable functions). You
can also select both of them if needed. In this practice, select both
Release and Snapshot.

Descriptio
n

Enter additional information to describe the repository. Use no
more than 200 characters.

Step 3 Click Submit. The details page of maven_repository is displayed. Figure 2-1
shows the created self-hosted repo.

Figure 2-1 Self-hosted repo

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the repository creation page, type maven_private_repository_repo in the
Repository Name field, and leave the other parameters as default.

Step 5 Click OK. The code repository details page is displayed. Figure 2-2 shows the
directory that stores files of the code repository.

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 8

Figure 2-2 Directory

----End

Creating and Running a Build Task

Step 1 Access CodeArts Build. Click Create Task. On the displayed Basic Information
page, set the following parameters. Leave the other parameters as default.
● Name: Assign a custom name to the build task, for example,

maven_private_repository_task.
● Code Source: Select the code source from which code will be pulled for this

build. In this practice, select Repo.
● Repository: Select maven_private_repository_repo, the code repository

created in Creating a CodeArts Repo Repository.

Step 2 Click Next and select the Maven template. Click OK. The Build Actions page is
displayed.

Step 3 On the Build Actions page, click the GUI tab. Click the Build with Maven action
on the left, and set the following parameters. Leave the other parameters as
default.
● Commands: Add a number sign (#) before the mvn package -

Dmaven.test.skip=true -U -e -X -B command and delete the number sign
before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

● Release to Self-hosted Repos: Select Configure all POMs.
● Release and Snapshot: Select the name (maven_repository is used in this

practice) of the created self-hosted repo.

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 9

Figure 2-3 Configuring the action of building with Maven

Step 4 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

----End

Viewing the Build Results

Step 1 After the build task is successfully run, go to the Actions tab page. Click the Build
with Maven action. The build log window will display the information about the
upload of the Maven build product to the self-hosted repo.

Step 2 In the navigation pane, choose Artifact > Self-hosted Repos. On the displayed
page, expand the directory of maven_repository (Snapshot) to view the released
dependencies, as shown in Figure 2-4.

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 10

Figure 2-4 Checking the software package

----End

Related Information
This practice shows how to archive Snapshot, the unreleased development
version. To archive the unchanged Release version, remove the snapshot suffix
from the version (change 1.0.0-SNAPSHOT to 1.0.0) in the pom.xml file of the
CodeArts Repo repository you created, commit the file change, and run the build
task again.

During a build process, Maven differentiates between snapshot and release
versions by the occurrence of the -SNAPSHOT suffix in the module's version
number (the value of version in the pom.xml file).

CodeArts Build
Best Practices

2 Building with Maven and Uploading the Software
Package to the Self-hosted Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 11

3 Building with Maven to Generate a
Private Dependency for Another Build (Built-

in Executors, GUI)

Scenario
In this practice, you upload the artifact of a Maven build project to a self-hosted
repo and include it as a second-party or third-party dependency within another
Maven build project, which then downloads and uses this artifact to build an
application in CodeArts Build. You will need:

● dependency_task: This build project releases the resulting
dependencyProject-1.0.jar package defined in the pom.xml file to the self-
hosted repo. The package will be used for build project release_task.

● release_task: This build project looks for the dependencyProject-1.0.jar
package released by build project dependency_repo in the self-hosted repo,
includes the package as a dependency in the build process, and releases the
final application.

● dependency_libs: This self-hosted repo stores the dependencyProject-1.0.jar
package released by build project dependency_task. Build project
release_task will download the package from this repo.
These steps depend on the following services:
– CodeArts Repo: stores your project code.
– CodeArts Artifact: stores your private dependencies.

Requirements
● You have permissions for CodeArts Artifact.
● You have permissions for CodeArts Repo.

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 12

https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html

Procedure

Table 3-1 Steps

Step Description

#codeci_practice_1
037/en-
us_topic_00000019
75247246_section0
34264112171

Create a project.

Creating a Self-
hosted Repo

Create a self-hosted repo.

Creating Code
Repository
dependency_repo

Create the code repository for releasing the
dependencyProject-1.0.jar package.

Creating Build
Task
dependency_task

Create the build task for releasing the
dependencyProject-1.0.jar package.

Creating Code
Repository
release_repo

Create a code repository for releasing the application.

Creating Build
Task release_task

Create the build task that depends on the
dependencyProject-1.0.jar package to build and release
the application.

Viewing the Build
Results

Verify the build results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 13

https://console.eu.huaweicloud.com/

Creating a Self-hosted Repo

Step 1 In the navigation pane, choose Artifact > Self-hosted Repos.

Step 2 Click Create and set parameters according to Table 3-2.

Table 3-2 Parameters for creating a self-hosted repo

Parameter Description

Repository
Type

Select Local Repository.

Repository
Name

Assign a custom name to the repository, for example,
dependency_libs.

Package
Type

Select Maven.

Project Leave the value as default. The field is autofilled with build-
bestpractice in this practice.

Include
Patterns

Leave it blank.

Version
Policy

Specify the version of artifacts stored in the repository. Select
either Release (the release version with stable functions) or
Snapshot (the development version with unstable functions). You
can also select both of them if needed. In this practice, select
Release.

Descriptio
n

Enter additional information to describe the repository. Use no
more than 200 characters.

Step 3 Click Submit. The details page of dependency_libs is displayed. Figure 3-1 shows
the created self-hosted repo.

Figure 3-1 Self-hosted repo

----End

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 14

Creating Code Repository dependency_repo

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the repository creation page, type dependency_repo in the Repository Name
field, and leave the other parameters as default.

Step 5 Click OK. The code repository details page is displayed. Figure 3-2 shows the
directory that stores files of the code repository.

Figure 3-2 Directory

Step 6 Click the pom.xml file to enter its details page. In the right pane, Click to
access the file editor.

Figure 3-3 Editing the pom.xml file

Step 7 Change groupId to com.huawei.dependency, artifactId to dependencyProject,
and name to dependency_project, as shown in Figure 3-4. Click OK to save your
changes to the pom.xml file.

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 15

Figure 3-4 Modifying the pom.xml file

----End

Creating Build Task dependency_task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set the following
parameters. Leave the other parameters as default.

● Name: Assign a custom name to the build task, for example,
private_repository_task.

● Code Source: Select Repo.

● Repository: Select private_repository_repo, the code repository created in
Creating Code Repository dependency_repo.

Step 3 Click Next. On the displayed page, select Blank Template. Click OK. The Build
Actions page is displayed.

Step 4 On the Build Actions page, click the GUI tab. Then click Add Build Actions on the
left and add the Build with Maven action.

Step 5 Click the Build with Maven action, and set the following parameters. Leave the
other parameters as default.

● Commands: Add a number sign (#) before the mvn package -
Dmaven.test.skip=true -U -e -X -B command and delete the number sign
before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

● Release to Self-hosted Repos: Select Configure all POMs.

● Release: Select the name (dependency_libs is used in this practice) of the
created self-hosted repo.

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 16

Figure 3-5 Configuring the action of building with Maven

Step 6 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

Step 7 After the build task is complete, check the build products. In the navigation pane,
choose Artifact > Self-hosted Repos. On the displayed page, expand the directory
of dependency_libs (Release) to check the released dependencies as build
outputs, as shown in Figure 3-6.

Figure 3-6 Checking dependencies

----End

Creating Code Repository release_repo

Step 1 In the navigation pane, choose Code > Repo.

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 17

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the repository creation page, type release_repo in the Repository Name field,
and leave the other parameters as default.

Step 5 Click OK. The code repository details page is displayed.

Step 6 Click the pom.xml file to enter its details page. In the right pane, Click to
access the file editor. Copy the following code to the red box shown in Figure 3-7.
Click OK to save your changes to the pom.xml file.

The following sample code adds the dependencyProject-1.0.jar package
generated as the output of the build task dependency_task in the dependency
element.

<modelVersion>4.0.0</modelVersion>
 <groupId>com.huawei.release</groupId>
 <artifactId>releaseProject</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>release_roject</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.huawei.dependency</groupId>
 <artifactId>dependencyProject</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 18

Figure 3-7 Modifying the pom.xml file

----End

Creating Build Task release_task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set the following
parameters. Leave the other parameters as default.
● Name: Assign a custom name to the build task, for example, release_task.
● Code Source: Select Repo.
● Repository: Select release_repo, the code repository created in Creating

Code Repository release_repo.

Step 3 Click Next. On the displayed page, select Blank Template. Click OK. The Build
Actions page is displayed.

Step 4 On the Build Actions page, click the GUI tab. Then click Add Build Actions on the
left and add the Build with Maven action. Leave the parameters as default.

Step 5 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 19

Figure 3-8 Running a build task

----End

Viewing the Build Results
On the Actions tab, check that the console displays the logs of the build task as it
runs. The Build Logs window automatically scrolls down to show new entries. As
shown in the following figure, the build log indicates that the
dependencyProject-1.0.jar package produced as the output of the build task
dependency_task is pulled as a dependency from the self-hosted repo
dependency_libs.

Figure 3-9 Viewing the build log

CodeArts Build
Best Practices

3 Building with Maven to Generate a Private
Dependency for Another Build (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 20

4 Building with npm and Uploading the
Software Package to the Release Repo

(Built-in Executors, GUI)

Scenario

In this practice, you use built-in executors provided by CodeArts Build to compile a
Node.js project and upload the resulting software package to the release repo.
These steps will be carried out through the graphical user interface (GUI).

These steps depend on the following services:

● CodeArts Repo: stores your project code.

● CodeArts Artifact: stores your private dependencies.

Requirements
● You have permissions for CodeArts Artifact.

● You have permissions for CodeArts Repo.

Procedure

Table 4-1 Steps

Step Description

#codeci_practic
e_1003/en-
us_topic_00000
01947776221_s
ection1885415
962013

Create a project.

Creating a
CodeArts Repo
Repository

Create a CodeArts Repo repository.

CodeArts Build
Best Practices

4 Building with npm and Uploading the Software
Package to the Release Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html

Step Description

Creating a
Build Task

Create a build task.

Configuring
Build Actions
and Running
the Build Task

Configure build actions and run the build task.

Viewing and
Verifying the
Build Results

View and verify the build results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 Access CodeArts Repo, click New Repository. On the displayed page, select
Template, and click Next.

Step 3 On the template selection page, select the Nodejs Webpack Demo template and
click Next.

Step 4 On the repository creation page, type nodesource in the Repository Name field,
leave the other parameters as default, and click OK.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 4-2. Then, click Next.

CodeArts Build
Best Practices

4 Building with npm and Uploading the Software
Package to the Release Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 22

https://console.eu.huaweicloud.com/

Table 4-2 Basic information

Paramet
er

Description

Name Assign a custom name to the build task, for example,
npm_yml_build.

Code
Source

Select Repo.

Reposito
ry

Select nodesource, the code repository created in Creating a
CodeArts Repo Repository.

Default
Branch

Keep the default value master.

Descripti
on

Enter additional information to describe the build task.

Step 3 Select the npm template and click OK. The Build Actions page is displayed.

----End

Configuring Build Actions and Running the Build Task

Step 1 Configure action Build with npm.

In the command editor, add # before the npm run build command. Then add the
zip -r ./nodeserver.zip ./ command to pack the code into nodeserver.zip, as
shown in Figure 4-1. Leave the other parameters as default.

Figure 4-1 Command example

Step 2 Configure action Upload to Release Repo according to Figure 4-2.

CodeArts Build
Best Practices

4 Building with npm and Uploading the Software
Package to the Release Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 23

Figure 4-2 Configuring the action of uploading a software package to the release
repo

Step 3 Once you have finished configuring all build actions, click Save and Run to run
the build task.

----End

Viewing and Verifying the Build Results
In the navigation pane, choose Artifact > Release Repos. On the displayed page,
find the uploaded software package, as shown in Figure 4-3.

Figure 4-3 Checking the uploaded the software package

The package name and release version are the same as those configured in Step
2.

CodeArts Build
Best Practices

4 Building with npm and Uploading the Software
Package to the Release Repo (Built-in Executors,

GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 24

5 Building with Maven (Custom Executors,
GUI)

Scenario

If the built-in executors provided by CodeArts Build fall short of your service needs,
you can use your own computing resources. Once registered, these computing
resources can be hosted in CodeArts Build. You can then configure CodeArts Build
to schedule them for running build tasks. In this practice, you configure actions
Build with Maven and Upload to Release Repo and run your build on custom
executors.

These steps depend on the following services:

● CodeArts Repo: stores your project code.
● CodeArts Artifact: stores your private dependencies.

Requirements
● You have permissions for CodeArts Artifact.
● You have permissions for CodeArts Repo.

Prerequisites

You have purchased an Elastic Cloud Server (ECS) for your custom executors by
referring to Purchasing an ECS.

Procedure

Table 5-1 Steps

Step Description

#codeci_practice_1
001/en-
us_topic_00000019
17657144_section0
34264112171

Create a project.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html
https://support.huaweicloud.com/eu/usermanual-ecs/ecs_03_0112.html

Step Description

Creating an Agent
Pool

Create a pool of custom executors (agent pool).

Creating a
CodeArts Repo
Repository

Create a repository to store code.

Creating and
Running a Build
Task

Create a build task that includes actions Build with
Maven and Upload to Release Repo.

Viewing the Build
Task and Its
Result

Check the build logs to verify the executors used for the
build task and view the uploaded software package in
CodeArts Artifact.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating an Agent Pool

Step 1 On the navigation bar, click the username and choose All Account
Settings.

Step 2 Choose Agent Management > Agent Pool.

Step 3 Click Create Pool. In the displayed dialog box, set parameters according to Table
5-2 and click Save.

Table 5-2 Agent pool configuration

Parameter Description

Pool Name Assign a custom name to the pool, for example,
custom_pool.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 26

https://console.eu.huaweicloud.com/

Parameter Description

Pool Type Select LINUX_DOCKER. When a task is initiated, a Linux
Docker container will be started to run the task.

Description (Optional) Enter additional information to describe the
pool.

This pool can be
used by all users of
the current
account.

(Optional) Selecting this option allows all users within the
current account to use the pool.

Step 4 Click the name of the new pool (custom_pool is used in this practice). The pool
configuration page is displayed.

Step 5 Click Create Agent. In the displayed dialog box, configure the agent according to
Table 5-3 and leave the other parameters as default.

Table 5-3 Parameters for creating an agent

Paramet
er

Description

Install
Docker

Selecting this option mandates Docker installation.

Install
Docker
automati
cally

Toggling on the switch will automatically install Docker.

AK Obtain the AK by referring to .

SK Obtain the SK by referring to .

Agent
Name

Assign a custom name to the agent, for example,
agent_test_custom.

Agent
Workspac
e

Enter an agent workspace that follows the standard Linux directory
structure. For example, /opt/agent_test_custom.

Step 6 Select the check box to confirm that you have read and accept the agreements.
Then click Generate Command and Copy Command. Click Close.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 27

Figure 5-1 Creating an agent

Step 7 Go to the ECS list page, find the row of the ECS purchased to meet prerequisites,
click Remote Login, and run the command copied in Step 6, as instructed by Step
3.

Step 8 On the agent list page, click Refresh List. After the information is automatically
synchronized in the background, a new item will be added to the list. The agent
alias is agent_test_custom-mwlye1NlLG.

----End

Creating a CodeArts Repo Repository

Step 1 On the navigation bar, choose Services > Repo. The CodeArts Repo homepage is
displayed.

Step 2 Click New Repository. On the displayed page, expand the Project drop-down list
and select the project name you specify when creating a project. Then, select
Template as the repository type. Click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the displayed page, set Repository Name to custom_repo, and leave the
other parameters as default. Click OK.

Figure 5-2 shows the directory that stores files of the code repository.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 28

Figure 5-2 Directory that stores files of the code repository

----End

Creating and Running a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 5-4. Then, click Next.

Table 5-4 Basic information

Parameter Description

Name Assign a custom name to the build task, for example,
custom_task.

Code
Source

Select Repo to pull the code hosted in a CodeArts Repo repository
for your build.

Repository Select custom_repo, the code repository created in Creating a
CodeArts Repo Repository.

Default
Branch

Keep the default value master.

Description Enter additional information to describe the build task.

Step 3 Select the Maven template and click OK. The Build Actions page is displayed.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 29

Step 4 Configure the build environment according to the following table. Leave the other
parameters as default, and click Save and Run.

Table 5-5 Environment parameters

Parameter Description

Execution
Host

Select Custom executor.

Agent Pool Expand the drop-down list and select custom_pool you created
in section "Creating an Agent Pool".

Figure 5-3 Configuring the build environment

Step 5 In the displayed dialog box, click Confirm. The build task run page is displayed.

----End

Viewing the Build Task and Its Result

Step 1 The console displays the logs of the build task as it runs. The log window
automatically scrolls down to show new entries. As shown in Figure 5-4, the log
indicates that the current build task is running on executor agent_test_custom-
mwlye1NlLG in pool custom_pool created in section Creating an Agent Pool.

Figure 5-4 Build logs

Step 2 The build task is considered successful if each build action is marked with
after running.

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 30

Figure 5-5 Build success

Step 3 Click action Upload to Release Repo. In the logs, you can find the path that
stores the software package uploaded to the release repo: /custom_task/
20240620.19/.

Step 4 In the navigation pane, choose Artifact > Release Repos. You can find the
software package at /custom_task/20240620.19/javaMavenDemo-1.0.jar.

Figure 5-6 Software package information

----End

CodeArts Build
Best Practices 5 Building with Maven (Custom Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 31

6 Building with Maven, Uploading the
Software Package, and Pushing the Image to

SWR (Built-in Executors, Code)

Scenario
CodeArts Build allows you to define your build as code using YAML. Your
configurations, such as build environments, parameters, commands, and actions,
reside in a YAML file (named build.yml in this practice). After creating this file,
add it along with the source code to a code repository. The file will be used as a
script by the system to run a build, making the process traceable, recoverable,
secure, and reliable. In this practice, you build with Maven, upload the resulting
software package to the release repo, and push the image to SWR.

These steps depend on the following services:

● SoftWare Repository for Container (SWR): provides repositories to store
Docker images uploaded by users. These images can be used in build,
deployment, and other scenarios.

● CodeArts Repo: stores your project code.
● CodeArts Artifact: stores your private dependencies.

Requirements
● You have created an organization named codeci_gray in SWR.
● You have permissions for CodeArts Artifact.
● You have permissions for CodeArts Repo.
● You can only use the code hosted in CodeArts Repo for YAML builds.

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 32

https://support.huaweicloud.com/eu/productdesc-swr/swr_03_0001.html
https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html
https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0014.html

Procedure

Table 6-1 Steps

Step Description

Creating a
Project

Create a project.

Creating a
CodeArts Repo
Repository

Create a CodeArts Repo repository to store code files.

Creating a
build.yml File

Define the entire build process in build.yml.

Creating a
Dockerfile

Customize an image by modifying the Dockerfile.

Creating a
Build Task

Create a build task.

Viewing and
Verifying the
Build Results

View and verify the build results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the repository creation page, type maven_yml_build in the Repository Name
field, and leave the other parameters as default.

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 33

https://console.eu.huaweicloud.com/

Step 5 Click OK. The repository details page is displayed.

----End

Creating a build.yml File

Step 1 On the code repository details page, click Create and select Create Directory
from the drop-down list, as shown in Figure 6-1.

Figure 6-1 Creating a directory

Step 2 On the Create Directory page, set parameters based on Table 6-2 and click OK.

Table 6-2 Creating a directory

Paramete
r

Description

Directory
Name

Enter a directory name, for example, .cloudbuild. Use 1 to 100
characters, including letters, digits, slashes (/), underscores (_),
hyphens (-), and periods (.).

Commit
Message

Describe the files within the directory. Use 1 to 2,000 characters.

Step 3 Click the name of the directory created in step Step 2.

Step 4 Click Create and select Create File from the drop-down list, as shown in Figure
6-2.

Figure 6-2 Creating a file

Step 5 Name the file build.yml and copy the following code to the file:
The YAML provided is a default template that can be edited as needed.

version: 2.0
steps:

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 34

 BUILD:
 - maven:
 image: cloudbuild@maven3.5.3-jdk8-open # The image path can be customized.
 inputs:
 settings:
 public_repos:
 - https://mirrors.huawei.com/maven
 cache: true # Determine whether to enable caching.
 command: mvn package -Dmaven.test.failure.ignore=true -U -e -X -B
 - upload_artifact:
 inputs:
 path: "**/target/*.?ar"
 - build_image:
 inputs:
 organization: codeci_gray # Organization name
 image_name: maven_demo # Image name
 image_tag: 1.0 # Image tag
 dockerfile_path: ./Dockerfile

Step 6 Click Submit.

----End

Creating a Dockerfile

Step 1 In the root directory, create a file named Dockerfile by following step Step 4. The
code in the file is as follows:
FROM swr.regionID.myhuaweicloud.com/codeci/special_base_image:centos7-base-1.0.2
MAINTAINER <devcloud@demo.com>
USER root
RUN mkdir /demo
COPY ./target/server-1.0.jar /demo/app.jar

server-1.0.jar combines the values of artifactId, packaging, and version in the
pom.xml file.

Step 2 Click Submit.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 6-3.

Table 6-3 Basic information

Parameter Description

Name Assign a custom name to the build task, for example,
maven_yml_build.

Code
Source

Select Repo.

Repository Select Repo01, the code repository created in Creating a
CodeArts Repo Repository.

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 35

Parameter Description

Default
Branch

Keep the default value master.

Description Enter additional information to describe the build task.

Step 3 Click Next. On the displayed page, select Blank Template. Click OK. The Build
Actions page is displayed.

Step 4 Click the Code tab. Then you can view the imported build script, as shown in
Figure 6-3.

Figure 6-3 Code tab

Step 5 Click Save and Run in the upper right corner.

----End

Viewing and Verifying the Build Results
● Checking the uploaded the software package

a. In the navigation pane, choose Artifact > Release Repos.
b. On the displayed page, find the folder that shares the same name as the

build task (the name you specify when creating the build task), as
shown in Figure 6-4. The software package can be found within this
folder.

Figure 6-4 Checking the software package

● Checking the pushed image

a. Go to the SWR console.
b. In the navigation pane, choose My Images. In the search box, select

Organization as the filter field, and type the organization name
(codeci_gray is used in this example) you configure when creating a
build.yml file.

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 36

https://console.eu.huaweicloud.com/swr/

c. In the filtered results, click the image name (maven_demo is used in this
example) you configure when creating a build.yml file.

CodeArts Build
Best Practices

6 Building with Maven, Uploading the Software
Package, and Pushing the Image to SWR (Built-in

Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 37

7 Running a Multi-Task Maven Build
Project (Built-in Executors, Code)

Scenario
A build task is the smallest unit that a build project can be broken down into for
simple service scenarios. However, for more complex requirements, you may need
to set up multiple build tasks in a modular and fine-grained way, and run them in
a specific order. This means that each task depends on the successful completion
of its dependency task.

To handle such complex builds, CodeArts Build offers BuildFlow, which organizes
multiple build tasks in a directed acyclic graph (DAG) and runs them in parallel
based on their dependencies.

In this practice, your build project involves three build tasks (Job1, Job2, and Job3).
Job3 depends on Job1 and Job2. Your code is stored in CodeArts Repo
repositories.

Requirements
● You can only use the code hosted in CodeArts Repo for a build flow.
● You have permissions for CodeArts Repo.

Procedure

Table 7-1 Steps

Step Description

#codeci_practice_1
020/en-
us_topic_00000019
61117537_section0
34264112171

Create a project.

Creating a
CodeArts Repo
Repository

Create a CodeArts Repo repository to store code files.

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 38

https://support.huaweicloud.com/eu/codeartsrepo/index.html

Step Description

Creating a
build.yml File

Define the entire build process in build.yml.

Creating Task
Scripts Used in
build.yml

Create a script for the whole build.

Creating and
Running a Build
Task

Create and run a build flow task.

Viewing the Build
Results

View the build results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the displayed page, set Repository Name to Repo01 and keep the default
values for other parameters.

Step 5 Click OK.

----End

Creating a build.yml File

Step 1 On the code repository details page, click Create and select Create Directory
from the drop-down list.

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 39

https://console.eu.huaweicloud.com/

Step 2 Name the directory as .cloudbuild and describe the files it contains. Click OK.

Step 3 In the .cloudbuild directory, click Create and select Create File from the drop-
down list. Name the file as build.yml and add the following code to the file:
version: 2.0 # The version number is a mandatory and unique parameter that must be set to 2.0.
params: # Parameters that can be referenced by builds.
 - name: condition_param
 value: 1
The envs configuration is optional.
envs:
 - condition: condition_param == 0 # The following host specification and type are not used if this
condition is not met.
 resource:
 type: docker
 arch: ARM
 - condition: condition_param == 1 # The following host specification and type are used if this condition is
met.
 resource:
 type: docker
 arch: X86

buildflow:
 jobs: # Build tasks
 - job: Job3 # Assign a custom name to the task.
 depends_on: # Define the task dependency. In this practice, the configuration indicates that Job3
depends on Job1 and Job2.
 - Job1
 - Job2
 build_ref: .cloudbuild/build_job3.yml # Define the YAML build script to run for Job3.
 - job: Job1
 build_ref: .cloudbuild/build_job1.yml # Define the YAML build script to run for Job1.
 - job: Job2
 build_ref: .cloudbuild/build_job2.yml # Define the YAML build script to run for Job2.

build.yml defines the entire build process, with three build tasks currently
specified. Job3 depends on Job1 and Job2 and will be run only after they are
completed. Job1 and Job2 have equal priority and will be triggered at the same
time. build_ref defines the build script to be run for each build task.

----End

Creating Task Scripts Used in build.yml

Step 1 In the .cloudbuild directory, click Create and select Create File from the drop-
down list. Name the file as build_job1.yml and add the following code to the file:
version: 2.0
steps:
 BUILD:
 - maven:
 image: cloudbuild@maven3.5.3-jdk8-open # The image is used for your build and can be customized.
 inputs:
 settings:
 public_repos:
 - https://mirrors.huawei.com/maven # Configure the dependency repository.
 cache: true # Determine whether to enable caching.
 command: mvn package -Dmaven.test.failure.ignore=true -U -e -X -B # The command to be run.

Step 2 Create build_job2.yml and build_job3.yml with the same code samples by
following the instructions in Step 1.

Step 3 The following figure shows the directory that stores files of the code repository.

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 40

Figure 7-1 Directory

----End

Creating and Running a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 7-2.

Table 7-2 Basic information

Parameter Description

Name Assign a custom name to the build task, for example, BuildFlow.

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 41

Parameter Description

Code
Source

Select Repo.

Repository Select Repo01, the code repository created in Creating a
CodeArts Repo Repository.

Default
Branch

Keep the default value master.

Description Enter additional information to describe the build task.

Step 3 Click Next and select the Maven template. Click OK. The Build Actions page is
displayed.

Step 4 Click the Code tab. The build scripts in the Repo01 code repository will be loaded
automatically.

Step 5 Click Save and Run. In the displayed dialog box, click Confirm. The build task run
page is displayed.

----End

Viewing the Build Results

The Build Processes tab page shows the complete flowchart of the current build
tasks. While the build tasks are still running, you can see that Job1 and Job2 are
running in parallel, and Job3 only runs after Job1 and Job2 are finished.

Step 1 On the Build Processes tab page, click either the Job1 node in the left-hand menu
or the green Job1 rectangle in the right pane. The run details page of Job1 is
displayed, where you can view the build logs of Job1, as shown in Figure 7-2.

Figure 7-2 Viewing the build results

The details page includes the following tabs:

● The Actions tab shows the resource scheduling information and sequential
position of this task within the whole build process.

● The Build Parameters tab shows the global parameters of the current build
task.

● The Build Scripts tab shows the script run for the current build task.

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 42

Step 2 You can view the run details of Job2 and Job3 by following instructions in step
Step 1.

----End

CodeArts Build
Best Practices

7 Running a Multi-Task Maven Build Project (Built-in
Executors, Code)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 43

8 Using the File from the Self-hosted Repo
to Build with Maven and Uploading the

Resulting Software Package (Built-in
Executors, GUI)

Scenario

CodeArts Build provides default dependency repositories. If they fall short of your
service needs, you can create custom repositories for Maven builds.

These steps depend on the following services:

● CodeArts Repo: stores your project code.

● CodeArts Artifact: stores your private dependencies.

Requirements
● You have permissions for CodeArts Artifact.

● You have permissions for CodeArts Repo.

Procedure

Table 8-1 Steps

Step Description

#codeci_practice_1
002/en-
us_topic_00000019
62216721_section0
34264112171

Create a project.

Creating a Self-
hosted Repo

Create a self-hosted repo.

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/eu/codeartsrepo/index.html
https://support.huaweicloud.com/eu/cloudartifact/index.html

Step Description

Checking
Information About
the Self-hosted
Repo

Check the ID and URL of the self-hosted repo, which will
be used for configuring the pom.xml file of the code
repository.

Uploading the
settings.xml File
to CodeArts Build

Upload the settings.xml file to Files for management in
CodeArts Build.

Creating a
CodeArts Repo
Repository

Create a code repository.

Configuring the
Self-hosted Repo
Address for
Storing Maven
Build Products

Configure the address of the self-hosted repo where the
build product will be uploaded.

Creating a Build
Task

Create a build task.

Configuring Build
Actions and
Running the Build
Task

Configure actions Download File from File Manager and
Build with Maven, and run the build task.

Viewing the Build
Results

View the build results stored in the self-hosted repo.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a Self-hosted Repo

Step 1 In the navigation pane, choose Artifact > Self-hosted Repos.

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 45

https://console.eu.huaweicloud.com/

Step 2 Click Create and set parameters according to the following table.

Table 8-2 Parameters for creating a self-hosted repo

Parameter Description

Repository
Type

Select Local Repository.

Repository
Name

Assign a custom name to the repository, for example,
private_repository.

Package
Type

Select Maven.

Project Leave the value as default. The field is autofilled with build-
bestpractice in this practice.

Include
Patterns

Leave it blank.

Version
Policy

Specify the version of artifacts stored in the repository. Select
either Release (the release version with stable functions) or
Snapshot (the development version with unstable functions). You
can also select both of them if needed. In this practice, select
Release.

Descriptio
n

Enter additional information to describe the repository. Use no
more than 200 characters.

Step 3 Click Submit. The details page of private_repository is displayed.

----End

Checking Information About the Self-hosted Repo

Step 1 Click Tutorial in the upper right corner.

Step 2 In the displayed dialog box, click Download Configuration File, leaving the
settings as default.

Step 3 In the dialog box that appears next, click Download.

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 46

Figure 8-1 Downloading the configuration file

Step 4 Open the downloaded settings.xml file and navigate to the <profile> section that
includes the <repositories> element. Under this element, find the <repository>
block that contains information about the repository. Record the values of id and
url.

Figure 8-2 Checking the repository ID and URL

----End

Uploading the settings.xml File to CodeArts Build

Step 1 In the navigation pane, choose CICD > Build.

Step 2 On the build task list page, choose More > Files.

Step 3 On the displayed page, click Upload File.

Step 4 In the displayed dialog box, upload the settings.xml file you download when
checking information about the self-hosted repo. Select the check box to
confirm that you have read and accept the agreements. Then click Save.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 47

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the repository creation page, type private_repository_repo in the Repository
Name field, and leave the other parameters as default.

Step 5 Click OK. Figure 8-3 shows the directory that stores files of the code repository.

Figure 8-3 Directory

----End

Configuring the Self-hosted Repo Address for Storing Maven Build Products

Step 1 Click the pom.xml file to enter its details page. In the right pane, Click to
access the file editor.

Step 2 Copy the following sample code and add it under the build tag.

Figure 8-4 Sample code of the pom.xml file

<distributionManagement>
 <repository>

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 48

 <id>ID</id>
 <url>https://example/</url>
 </repository>
 </distributionManagement>

Replace the placeholders of id and url (ID and https://example/) with the values
of id and url recorded in Step 4.

Step 3 Click OK.

----End

Creating a Build Task

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set the following
parameters. Leave the other parameters as default.
● Name: Assign a custom name to the build task, for example,

private_repository_task.
● Code Source: Select Repo.
● Repository: Select private_repository_repo, the code repository created in

Creating a CodeArts Repo Repository.

Step 3 Click Next. On the displayed page, select Blank Template.

Step 4 Click OK. The Build Actions page is displayed.

----End

Configuring Build Actions and Running the Build Task

Step 1 Click Add Action. Add action Download File from File Manager. Leave Action
Name and Tool Version as default. Expand the File Name drop-down list and
select the settings.xml file uploaded to CodeArts Build.

Step 2 Click Add Action. Add action Build with Maven. In the Commands window, add
a number sign (#) before the mvn package -Dmaven.test.skip=true -U -e -X -B
command, delete the number sign before mvn deploy -Dmaven.test.skip=true -
U -e -X -B, and change mvn deploy -Dmaven.test.skip=true -U -e -X -B to mvn
deploy -Dmaven.test.skip=true -s settings.xml -U -e -X -B. Leave the other
parameters as default.

Figure 8-5 Command for packaging

Figure 8-6 Command for releasing the dependencies

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 49

Step 3 Click Save and Run. In the displayed dialog box, click Confirm. Wait for the build
task to complete.

----End

Viewing the Build Results

Step 1 Click the build task name (private_repository_task is used in this practice).

Step 2 On the Build History tab page, click the build ID. On the displayed page, check
the action logs. com/huawei/demo/javaMavenDemo/1.0 is the path of the
uploaded build product in the self-hosted repo private_repository.

Figure 8-7 Path for uploading dependencies

Step 3 In the navigation pane, choose Artifact > Self-hosted Repos.

Step 4 Expand private_repository and its subfolders. Find the uploaded software
package at com/huawei/demo/javaMavenDemo/1.0.

Figure 8-8 Checking the uploaded the software package

----End

CodeArts Build
Best Practices

8 Using the File from the Self-hosted Repo to Build
with Maven and Uploading the Resulting Software

Package (Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 50

9 Running a Build Task on a Custom
Environment (Built-in Executors, GUI)

Scenario
You may need to extend CodeArts Build with custom environments in the
following scenarios:

● CodeArts Build uses Java 1.8 by default, but you may require Java 21.
● Your build may require your enterprise's dedicated tools that are not

supported by CodeArts Build.

In this practice, you customize a build environment to run a build task.

Requirements
● You have created an organization named hwstaff_codeci_gray in SWR.

– You have permissions for CodeArts Artifact.
– You have permissions for CodeArts Repo.

Procedure

Table 9-1 Steps

Step Description

#codeci_practice_1
035/en-
us_topic_00000019
70572204_section0
34264112171

Create a project.

Creating a
CodeArts Repo
Repository

Create the code file used for your build.

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 51

https://support.huaweicloud.com/eu/usermanual-swr/swr_01_0014.html

Step Description

Creating an Image
as the Custom
Build Environment

Create an image as the custom environment.

Creating and
Running a Build
Task

Create, configure, and run a build task.

Viewing the Build
Results

Check the build logs and result files to verify the build
results.

Creating a Project

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Click Create Project, and select the Scrum template.

Step 5 Set the project name to build-bestpractice and , and leave the other parameters
as default.

Step 6 Click OK to access the project.

----End

Creating a CodeArts Repo Repository

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the displayed page, click New Repository. Select Template, and click Next.

Step 3 On the template selection page, select the Java Maven Demo template and click
Next.

Step 4 On the displayed page, set Repository Name to custom_env_repo, and leave the
other parameters as default. Click OK. The details page of the new code repository
is displayed.

Step 5 In the root directory of the code repository, choose Create and select Create File
from the drop-down list.

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 52

https://console.eu.huaweicloud.com/

Figure 9-1 Creating a file

Step 6 Name the file Dockerfile, copy the following code to the file, and click Submit.
FROM ubuntu:latest

set maintainer
LABEL maintainer=custom_image

RUN apt-get update && apt-get install -y wget

RUN mkdir /usr/java && \
 cd /usr/java && \
 wget "https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz" && \
 tar -xvf jdk-17_linux-x64_bin.tar.gz && \
 rm -rf jdk-17_linux-x64_bin.tar.gz

RUN mkdir /usr/maven && \
 cd /usr/maven && \
 wget "https://dlcdn.apache.org/maven/maven-3/3.9.8/binaries/apache-maven-3.9.8-bin.tar.gz" && \
 tar -xvf apache-maven-3.9.8-bin.tar.gz && \
 rm -rf apache-maven-3.9.8-bin.tar.gz

ENV JAVA_HOME /usr/java/jdk-17.0.12
ENV MAVEN_HOME /usr/maven/apache-maven-3.9.8
ENV PATH $PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin

RUN java -version && mvn -v

USER build

Figure 9-2 Dockerfile content

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 53

Dockerfile contains the following instructions for building a container image as
your custom environment.

Table 9-2 Dockerfile instructions

Instruc
tion

Description

FROM It specifies the base image (the latest official Ubuntu image is used in
this practice) and must be the first instruction.

LABEL It adds metadata to an image.

RUN They are run when docker build creates an image. In this practice,
RUN instructions install three tools: Wget, Java Development Kit (JDK)
17, and Maven 3.9.8. After environment variables are set, these
instructions run commands to verify the installation of proper JDK and
Maven versions.

ENV They set environment variables. In this practice, ENV instructions set
environment variables for JDK and Maven and add their directory to
the PATH environment variable so that users can conveniently run JDK
and Maven by invoking shortcut commands.

USER It sets the user when the container is run. In this practice, the build
user is set for the container runtime.

----End

Creating an Image as the Custom Build Environment

Step 1 In the navigation pane, choose CICD > Build.

Step 2 Click Create Task. On the displayed Basic Information page, set parameters
according to Table 9-3. Then, click Next.

Table 9-3 Basic information

Parameter Description

Name Assign a custom name to the build task, for example,
custom_env_task.

Code
Source

Select the code source from which code will be pulled for your
build. In this practice, select Repo.

Repository Select custom_env_repo, the code repository created in Creating
a CodeArts Repo Repository.

Default
Branch

Keep the default value master.

Step 3 Select Blank Template and click OK to create the build task. The Build Actions
page is displayed.

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 54

Step 4 On the Build Actions page, click the GUI tab and click Add Build Actions.

Figure 9-3 Adding a build action

Step 5 In the right pane, click the Container related tab. Hover over action Build Image
and Push to SWR and click Add on the card. Set the parameters according to
Figure 9-4. Expand the Organization drop-down list and select
hwstaff_codeci_gray created to meet the requirements. Type
custom_ubuntu_image in the Image Name text box, and v1.0 in Image Tag.
Leave the other parameters as default.

Figure 9-4 Configuring the build action

Step 6 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

Step 7 On the Actions tab, check that the console displays the logs of the build task as it
runs. The Build Logs window automatically scrolls down to show new entries. As
shown in Figure 9-5, the console prints logs of creating an image from the
Dockerfile stored in the code repository.

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 55

Figure 9-5 Build task run logs

Step 8 After the build task is successfully run, go to the SWR console. Choose My Images
and click the Private Images tab (which is displayed by default). From there, click
the name of the image (custom_ubuntu_image) created in step Step 5 to access
its details page.

Step 9 On the image details page, click Edit. In the displayed dialog box, set Type to
Public and click OK.

Figure 9-6 Image details

Step 10 In the Image Pull Command column, copy and save the complete image name
following docker pull (swr.{regionID}.myhuaweicloud.com/
hwstaff_codeci_gray/custom_ubuntu_image:v1.0 is copied in this practice) for
future use. {regionID} indicates the ID of the current region.

Figure 9-7 Complete image name

----End

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 56

Creating and Running a Build Task

Step 1 Access CodeArts Build. Click Create Task. On the displayed Basic Information
page, set the following parameters. Leave the other parameters as default.
● Name: Assign a custom name to the build task, for example,

custom_env_build_task.
● Code Source: Select the code source from which code will be pulled for this

build. In this practice, select Repo.
● Repository: Select custom_env_repo, the code repository created in Creating

a CodeArts Repo Repository.

Step 2 Click Next. On the displayed page, select Blank Template. Click OK. The Build
Actions page is displayed.

Step 3 On the Build Actions page, click the GUI tab and click Add Build Actions.

Step 4 In the right pane, click the Container related tab. Hover over action Use SWR
Public Image and click Add on the card. Set the parameters according to Figure
9-4. In the Image Address text box, enter the complete image name swr.
{regionID}.myhuaweicloud.com/hwstaff_codeci_gray/
custom_ubuntu_image:v1.0 saved in Step 10. Copy the following sample code to
the Commands window. Leave the other parameters as default.
java -version # Show the JDK version contained in the current image.
mvn -v # Show the Maven version contained in the current image.
mvn package -Dmaven.test.skip=true -U -e -X -B # Run the maven build command.

Figure 9-8 Configuring the action of using the SWR public image

Step 5 Click Add Action and add the Upload to Release Repo action. In the Package
Location text box, enter **/target/*.?ar. Leave the other parameters as default.

Step 6 Click Save and Run in the upper right corner. In the displayed dialog box, click
Confirm. The build task run page is displayed.

----End

Viewing the Build Results

Step 1 After the build task is successfully run, go to the Actions tab page. On the top of
the Build Logs window, click View More to scroll the window up and reveal the
preceding logs. If you see Status: Downloaded newer image for swr.
{regionID}.myhuaweicloud.com/hwstaff_codeci_gray/
custom_ubuntu_image:v1.0 in the logs, the current build environment is created
using the custom image.

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 57

Step 2 Click the Upload to Release Repo action on the left. The right-hand log window
will display information about the upload of the build product to the release repo.

Step 3 In the navigation pane, choose Artifact > Release Repos.

On the displayed page, find the folder that shares the same name as the build
task, as shown in Figure 9-9. The software package can be found within this
folder.

Figure 9-9 Checking the software package

----End

CodeArts Build
Best Practices

9 Running a Build Task on a Custom Environment
(Built-in Executors, GUI)

Issue 01 (2024-11-30) Copyright © Huawei Technologies Co., Ltd. 58

	Contents
	1 Creating a Docker Image with a Maven Artifact and Pushing the Image to SWR (Built-in Executors, GUI)
	2 Building with Maven and Uploading the Software Package to the Self-hosted Repo (Built-in Executors, GUI)
	3 Building with Maven to Generate a Private Dependency for Another Build (Built-in Executors, GUI)
	4 Building with npm and Uploading the Software Package to the Release Repo (Built-in Executors, GUI)
	5 Building with Maven (Custom Executors, GUI)
	6 Building with Maven, Uploading the Software Package, and Pushing the Image to SWR (Built-in Executors, Code)
	7 Running a Multi-Task Maven Build Project (Built-in Executors, Code)
	8 Using the File from the Self-hosted Repo to Build with Maven and Uploading the Resulting Software Package (Built-in Executors, GUI)
	9 Running a Build Task on a Custom Environment (Built-in Executors, GUI)

